Enantioselective Synthesis of Oseltamivir Phosphate (Tamiflu) via the Iron-Catalyzed Stereoselective Olefin Diazidation

Li, H.; Shen, S.; Zhu, C.; JACS **2018**, xx, xx-xx DOI: 10.1021/jacs.8b06900

Leila Terrab Wipf Group Current Literature 08/11/2018

Tamiflu®

Oseltamivir Phosphate (Tamiflu)

AcHN
$$CO_2Et$$
 H_3PO_4

- 1996: Developed by Gilead and Hoffman-La Roche
- Treats and prevents influenza A and influenza B
 - Cells infected after enzymatic hydrolysis of terminal sialic acid from glycoconjugates

Sialic acids

Tamiflu mimics sialic acids

Previous Syntheses of Tamiflu®

Roche:

Fukuyama:

Proposed Functionalization

R = H, acyl, or aryl X, Y= H and leaving group

Xu's Previous work on stereoselective diamination

Diamination by benziodoxole activation:

Diamination by peroxyester activation:

Fe(II) cat. bidentate ligand
$$\stackrel{i}{P}$$
 TMSN₃ $\stackrel{i}{P}$ TMSN₃

Angew. Chem. Int. Ed. **2016**, *55*, 534 –538 ACS Catal. **2018**, *8*, 4473–4482

Proposed Functionalization

$$\begin{array}{c} QR \\ X \\ CO_2Et \end{array}$$
 more suitable substrate

R = H, acyl, or aryl X, Y= H and leaving group

Diels Alder Synthesis of **C**

Kinetic Resolution using Amano Lipase from *Pseudomonas fluorescens*

Azidation of (+)-25

Leila Terrab @ Wipf Group Page 8 of 14 8/12/2018

Mechanistic studies of azidation

19a is stable towards TMSN3 without an iron catalyst

19a TMSN₃ TMSN₃ TMSN₃ Te(X)₂L_n
$$R^3$$
 R^2 R^3 R^4 R^2 R^3 R^4 R^2 R^4 R^4

First C-N₃ bond forming step is reversible Second C-N₃ bond forming step is rate-limiting

Solution: increase [25] and decrease [19c]. Slow addition of 19c

Stereoselectivity of azide addition

C4 azide addition: dr >20:1

C₃ azide addition: dr = 7.4:1

More reactive

dr not improved by iron catalysts used

Stereoselectivity through Substrate Control

^aFe(OAc)₂ (5 mol %), **L1** (5 mol %), **19a** (2 equiv), CH₂Cl₂/MeCN (10:1), 0.8 M, 22 °C, TMSN₃ (5 equiv) added gradually within 8 h. ^bFe(OAc)₂ (5 mol %), **L1** (5 mol %), **19a** (1.5 equiv), CH₂Cl₂/MeCN (10:1), 0.8 M, 22 °C, TMSN₃ (3.6 equiv) added gradually within 8 h. The reactions were subsequently quenched with saturated NaHCO₃ solution.

Proposed Stereochemical Model

R group needs to be small to avoid β face transfer

Synthesis of Tamiflu from the deamination intermediate